Question #41c4f

2 Answers
Nov 30, 2017

#intdx/sqrt(e^(2x)-1)=arctansqrt(e^(2x)-1)+C#

Explanation:

.

#intdx/sqrt(e^(2x)-1)#

We will solve this by Trigonometric Substitution:

In the right triangle below:

enter image source here

If #c=e^x# and #a=1# we can use the Pythagoras' formula to solve for the length of side #b#

#c^2=a^2+b^2#

#b^2=c^2-a^2#

#b=sqrt(c^2-a^2)=sqrt(e^(2x)-1#

#sectheta=c/a=e^x#

#tantheta=b/a=sqrt(e^(2x)-1#

#secthetatanthetad(theta)=e^xdx#

#dx=(secthetatanthetad(theta))/e^x=(secthetatanthetad(theta))/sectheta=tanthetad(theta)#

We have all the pieces to substitute:

#intdx/sqrt(e^(2x)-1)=int(1/sqrt(e^(2x)-1))(dx)=int1/tantheta*tanthetad(theta)=intd(theta)=theta+C#

Now we can substitute back:

From #tantheta=sqrt(e^(2x)-1# we have:

#theta=arctansqrt(e^(2x)-1#

Therefore:

#intdx/sqrt(e^(2x)-1)=arctansqrt(e^(2x)-1)+C#

Nov 30, 2017

#(dx)/sqrt(e^(2x)-1)=arcsec(e^x)+C#

Explanation:

#(dx)/sqrt(e^(2x)-1)#

=#(e^x*dx)/[e^x*sqrt(e^(2x)-1)]#

After using #e^x=secu# and #e^x*dx=secu*tanu# substitution, this integral became,

#(secu*tanu*du)/[secu*sqrt((secu)^2-1)]#

=#(tanu*du)/sqrt((tanu)^2)#

=#(tanu*du)/tanu#

=#du#

=#u+C#

After using #e^x=secu# and #u=arcsec(e^x)# inverse transforms, I found

#(dx)/sqrt(e^(2x)-1)=arcsec(e^x)+C#