.
#intdx/sqrt(e^(2x)-1)#
We will solve this by Trigonometric Substitution:
In the right triangle below:
If #c=e^x# and #a=1# we can use the Pythagoras' formula to solve for the length of side #b#
#c^2=a^2+b^2#
#b^2=c^2-a^2#
#b=sqrt(c^2-a^2)=sqrt(e^(2x)-1#
#sectheta=c/a=e^x#
#tantheta=b/a=sqrt(e^(2x)-1#
#secthetatanthetad(theta)=e^xdx#
#dx=(secthetatanthetad(theta))/e^x=(secthetatanthetad(theta))/sectheta=tanthetad(theta)#
We have all the pieces to substitute:
#intdx/sqrt(e^(2x)-1)=int(1/sqrt(e^(2x)-1))(dx)=int1/tantheta*tanthetad(theta)=intd(theta)=theta+C#
Now we can substitute back:
From #tantheta=sqrt(e^(2x)-1# we have:
#theta=arctansqrt(e^(2x)-1#
Therefore:
#intdx/sqrt(e^(2x)-1)=arctansqrt(e^(2x)-1)+C#