If #cos^(2)20^@-sin^(2)20^@=p# then #sin80^@=#?

1 Answer
Dec 2, 2017

#sin80^@=1/2sqrt(2+sqrt(2+2p))#

Explanation:

As #cos2A=cos^2A-sin^2A=2cos^2A-1=1-2sin^2A#

#cos^2 20^@-sin^2 20^@=cos(2xx20^@)=cos40^@=p#

Also #cosA=sqrt((1+cos2A)/2)#

Hence #2cos^2 20^@-1=p# and #cos20^@=sqrt((1+p)/2)#

and #cos10^@=sqrt((1+cos20^@)/2)=sqrt((1+sqrt((1+p)/2))/2)#

Now #sin80^@=cos(90^@-10^@)=cos10^@#

= #sqrt((1+sqrt((1+p)/2))/2)#

= #sqrt((sqrt2+sqrt(1+p))/(2sqrt2))#

= #1/2sqrt(2+sqrt(2+2p))#