Solve equation #4(sin^2(2x)) +7(sin^2x)-2=0# For #0<x<360#?

1 Answer
Dec 3, 2017

#x=17.76, 162.24, 197.76, and 342.24# Degrees

Explanation:

#4sin^2(2x)+7sin^2x-2=0#

We have a double-angle identity that gives us:

#sin(2x)=2sinxcosx# then:

#sin^2(2x)=4sin^2xcos^2x#

Let's plug this in:

#16sin^2xcos^2x+7sin^2x-2=0#

Now, from the identity #sin^2x+cos^2x=1#, we can get:

#cos^2x=1-sin^2x#

Let's plug this in:

#16sin^2x(1-sin^2x)+7sin^2x-2=0#

#16sin^2x-16sin^4x+7sin^2x-2=0#

#-16sin^4x+23sin^2x-2=0#. Let's multiply the equation by #-1#:

#16sin^4x-23sin^2x+2=0#

Let's let #z=sin^2x#. Then #z^2=sin^4x#. Let's plug them in:

#16z^2-23z+2=0#

Let's use the quadratic formula to solve for #z#:

#z=(23+-sqrt(529-4(16)(2)))/(2(16))=(23+-sqrt401)/32#

#z=sin^2x=1.3445# and #z=sin^2x=0.0930#

#sinx=+-sqrt1.3445=+-1.1595#, then #x=arcsin(+-1.1595)#

These two answers are not acceptable because we are looking for angles whose #sin# values are larger than #+-1#.

#sinx=+-sqrt0.0930=+-0.3050#, then #x=arcsin(+-0.3050)#

#x=17.76# Degrees, and #x=-17.76=360-17.76=342.24#Degrees

Now, because the problem asked for values between #0# and #360# Degrees, we can have two more answers:

#x=180-17.76=162.24# Degrees, and

#x=180+17.76=197.76# Degrees