Find the derivative using first principles? : #x^n#
4 Answers
We can do this via the use of first principles...
Explanation:
We must first derive the idea of a derivative;
using this idea we must use this for
to yields;
Now we must cosnider the expansion of
We use
So hence
hence the limit becomes;
and we know
So hence yields;
See below.
Explanation:
Using the power rule:
Example:
Please see below.
Explanation:
Verify (by multiplication) that for positive integer
# = lim_(trarrx)((x-t)(x^(n-1)+x^(n-2)t + x^(n-3)t^2 + * * * +xt^(n-2)+t^(n-1)))/(x-t)#
# = lim_(trarrx)(x^(n-1)+x^(n-2)t + x^(n-3)t^2 + * * * +xt^(n-2)+t^(n-1))#
There are
# d/dx x^n= nx^(n-1) #
Explanation:
Using the limit definition of the derivative then if:
# y = f(x) = x^n #
Then we have:
# dy/dx = lim_(h rarr 0) (f(x+h) - f(x))/h #
# \ \ \ \ \ = lim_(h rarr 0) ((x+h)^n - x^n)/h #
Then using the Binomial Theorem, we can expand to get:
# dy/dx = lim_(h rarr 0) ({x^n+nx^(n-1)h+...+h^n} - x^n)/h #
# \ \ \ \ \ = lim_(h rarr 0) (nx^(n-1)h+...+h^n)/h #
# \ \ \ \ \ = lim_(h rarr 0) nx^(n-1)+...+h^(n-1) #
Note that all the terms on the right, apart from the first, contain the term
# :. dy/dx = nx^(n-1) #