Each set of ordered pairs represents a function: #(0,0), (1,4), (1,16), (3,36), (4,64)#? What is the function?

1 Answer
Dec 5, 2017

See a solution process below IF the ordered pairs are:

#(0, 0), (1, 4), (color(red)(2), 16), (3, 36), (4, 64)#

Explanation:

We can rewrite the ordered pairs as:

#(0, 0), (1, [1 xx 4]), (2, [2 xx 8]), (3, [3 xx 12]), (4, [4 xx 16])#

We can rewrite it again as:

#(0, 0), (1, [1 xx {1 xx 4}]), (2, [2 xx {2 xx 4}), (3, [3 xx {3 xx 4}]), (4, [4 xx {4 xx 4}])#

Or

#(0, 0), (1, [{1 xx 1} xx 4]), (2, [{2 xx 2} xx 4), (3, [{3 xx 3} xx 4]), (4, [{4 xx 4} xx 4])#

Or

#(0, [0^2 xx 4]), (1, [1^2 xx 4]), (2, [2^2 xx 4), (3, [3^2 xx 4]), (4, [4^2 xx 4])#

Let #x# represent the first number in the ordered pair, then the function is:

#f(x) = x^2 xx 4#

Or

#f(x) = 4x^2#