How do you solve this system of equations: #-x - y = 6 and - 2x - y = 8#?

1 Answer
Dec 5, 2017

See a solution process below:

Explanation:

Step 1) solve the first equation for #x#:

#-x - y = 6#

#-x - y + color(red)(y) = 6 + color(red)(y)#

#-x - 0 = 6 +y#

#-x = 6 +y#

#color(red)(-1) xx -x = color(red)(-1)(6 +y)#

#x = (color(red)(-1) xx 6) +(color(red)(-1) xx y)#

#x = -6 +(-y)#

#x = -6 - y#

Step 2) Substitute #(-6 - y)# for #x# in the second equation and solve for #y#;

#-2x - y = 8# becomes:

#-2(-6 - y) - y = 8#

#(-2 xx -6) - (-2 xx y) - y = 8#

#12 - (-2y) - y = 8#

#12 + 2y - y = 8#

#12 + 2y - 1y = 8#

#12 + (2 - 1)y = 8#

#12 + 1y = 8#

#12 + y = 8#

#12 - color(red)(12) + y = 8 - color(red)(12)#

#0 + y = -4#

#y = -4#

Step 3) Substitute #-4# for #y# in the solution to the first equation at the end of Step 1 and calculate #x#:

#x = -6 - y# becomes:

#x = -6 - (-4)#

#x = -6 + 4#

#x = -2#

The Solution Is: #x = -2# and #y = -4# or #(-2, -4)#