What is the vertex form of #y=x^2 + 35x + 36#?
1 Answer
Dec 5, 2017
#y=(x+17.5)^2-270.25#
Explanation:
Given -
#y=x^2+35x+36#
Vertex
#x=(-b)/(2a)=(-35)/(2xx1)=(-35)/2=-17.5#
At
#y= (-17.5)^2+35(-17.5)+36#
#y= (-17.5)^2+35(-17.5)+36#
#y=306.25-612.5+36=-270.25#
#(-17.5, -270.25)#
Vertex form
#y=a(x-h)^2+k#
Where -
#a=# coefficient of#x^2#
#h=-17.5#
#k=-270.25#
Then substitute -
#y=(x-(-17.5))^2+(-270.25)#
#y=(x+17.5)^2-270.25#