#int_0^1 sqrt(2+x^2)*dx#
After using #x=sqrt2tanu# and #dx=sqrt2(secu)^2*du# transforms , this integral became
#I=int_0^arctan(sqrt2/2) 2(secu)^3*du#
=#int_0^arctan(sqrt2/2) 2(secu)^2*secu*du#
=#int_0^arctan(sqrt2/2) 2(secu)^2*secu*du#
=#[2tanu*secu]_0^arctan(sqrt2/2)#-#int_0^arctan(sqrt2/2) 2tanu*secu*tanu*du#
=#2*(sqrt2/2*sqrt6/2-0*1)#-#int_0^arctan(sqrt2/2) 2secu*(tanu)^2*du#
=#sqrt3#-#int_0^arctan(sqrt2/2) 2secu*[(secu)^2-1]*du#
=#sqrt3#-#int_0^arctan(sqrt2/2) 2(secu)^3*du#+#int_0^arctan(sqrt2/2) 2secu*du#
=#sqrt3#-#I#+#2[ln(secu+tanu)]_0^arctan(sqrt2/2)#
#2I=sqrt3#+#2[ln(secu+tanu)]_0^arctan(sqrt2/2)#
#2I=sqrt3#+#2ln((sqrt6+sqrt2)/2)#
#I=sqrt3/2#+#ln((sqrt6+sqrt2)/2)#