How do you evaluate an integral with an absolute value? Question below.

enter image source here

1 Answer
Dec 9, 2017

#int_0^1 abs(2x^2+x-1)*dx=3/4#

Explanation:

Once I found roots of integrand,

#2x^2+x-1=0#

#(2x-1)*(x+1)=0#

Hence #x_1=-1# and #x_2=1/2#

Integrand was negative when #-1<=x<=1/2# and positive in other situations.

Consequently,

#int_0^1 abs(2x^2+x-1)*dx#

=#int_0^(1/2) (-2x^2-x+1)*dx#+#int_(1/2)^1 (2x^2+x-1)*dx#

#A=int_0^(1/2) (-2x^2-x+1)*dx#

=#[-2/3x^3-1/2x^2+x]_0^(1/2)#

=#(-2/3)*1/8-(1/2)^3+1/2#

=#1/2-1/8-1/12#

=#7/24#

#B=int_(1/2)^1 (2x^2+x-1)*dx#

=#[2/3x^3+1/2x^2-x]_(1/2)^1#

=#2/3*(1-1/8)+1/2*(1-1/4)-(1-1/2)#

=#7/12+3/8-1/2#

=#11/24#

Thus,

#int_0^1 abs(2x^2+x-1)*dx#

=#A+B#

=#7/24+11/24#

=#3/4#