How do you simplify #\frac { 7r + 14} { 3r ^ { 2} + r - 10}#?

2 Answers
Dec 9, 2017

See a solution process below:

Explanation:

We can factor the numerator and denominator as:

#(7(r + 2))/((r + 2)(3r - 5))#

Now, cancel the common terms:

#(7color(red)(cancel(color(black)((r + 2)))))/(color(red)(cancel(color(black)((r + 2))))(3r - 5)) => 7/(3r - 5)#

Dec 9, 2017

#7/(3r-5)#

Explanation:

#"factorise the numerator/denominator"#

#7r+14=7(r+2)larrcolor(blue)"common factor of 7"#

#3r^2+6r-5r-10larrcolor(blue)"factor by grouping"#

#=3r(r+2)-5(r+2)#

#=(r+2)(3r-5)#

#rArr(7r+14)/(3r^2+r-10)#

#=(7cancel((r+2)))/(cancel((r+2))(3r-5))#

#=7/(3r-5)to(r!=5/3)#