#1/cos^2x=1-tanx#
#1=cos^2x(1-tanx)#
#1=cos^2x-tanxcos^2x#
#1=cos^2x-sinx/cosxcos^2x#
#1=cos^2x-sinxcosx#
#sin^2x+cos^2x=cos^2x-sinxcosx#
#sin^2x=-sinxcosx#
#sin^2x+sinxcosx=0#
#sinx(sinx+cosx)=0#
#sinx=0# or #sinx+cosx=0#
#sinx=0# or #sinx=-cosx#
Edit: from the comments:
For the range #0<=x<=2pi#
a) #sinx=0#
#:.x=0, x=pi#
b) #sinx+cosx=0#
We are going to divide both sides by #cosx#. It is necessary to check beforehand that we are not dividing by zero. However, if #cosx=0, sinx=1#, and the sum is not zero. In this case, we are safe to divide by #cosx#/
#sinx/cosx+cosx/cosx=0#
#tanx+1=0#
#tanx=-1#
#x=(3pi)/4, (7pi)/4#
Putting this together:
#x=0, (3pi)/4, pi, (7pi)/4#