How do you find the principle argument of #4(-cos(pi/3)+isin(pi/3))#?

1 Answer
Dec 10, 2017

Argument is #(2pi)/3#.

Explanation:

Observe #4(-cos(pi/3)+isin(pi/3))#. In it while real portion #-4cos(pi/3)# is negative, imaginary portion #4isin(pi/3)# is positive and hence in a complexnumber plane, the number will appear in second quadrant.

Hence, wecan write #4(-cos(pi/3)+isin(pi/3))#

as #4(cos(pi-pi/3)+isin(pi-pi/3))#

or #4(cos((2pi)/3)+isin((2pi)/3))#

Hence, while modulus is #4#, argument is #(2pi)/3#.