By the cofunction identity:
#sin(73^circ)=cos(90^circ-73^circ)=cos(17^circ)#
So we have #sec(17^circ)-cos(17^circ)#. We know that #sec(x)=1/cos(x)# so we can rewrite this expression:
#1/cos(17^circ)-cos(17^circ)=(1-cos^2(17^circ))/cos(17^circ)#
By the Pythagorean ID, #sin^2(x)+cos^2(x)=1# and so #1-cos^2(x)=sin^2(x)#:
#sin^2(17^circ)/cos(17^circ)#
Rearranging #sin^2(x)+cos^2(x)=1# we can also see that #cos(x)=sqrt(1-sin^2(x))#.
(Since #17^circ# is in QI all trig functions are positive.)
#sin^2(17^circ)/sqrt(1-sin^2(17^circ))#.
Now we substitute #x/y# for #sin(17^circ)#:
#(x/y)^2/sqrt(1-(x/y)^2)#.
Now we do some algebra:
#(x^2/y^2)/sqrt(1-x^2/y^2)=(x^2/y^2)/sqrt((y^2-x^2)/y^2)#
#=(x^2/y^2)/((1/y)sqrt(y^2-x^2))=(y*(x^2/y^2))/sqrt(y^2-x^2)#
#=(x^2/y)/sqrt(y^2-x^2)=x^2/(y*sqrt(y^2-x^2))#, as required.