How to solve #lim_(x->0)(sqrt(cosx)-1)/x^2# ?
3 Answers
Explanation:
but for small
Explanation:
We assume that,
# = ((cosx-1))/(x^2(sqrt(cosx)+1)) * ((cosx+1))/((cosx +1))#
# = (cos^2x-1)/(x^2(sqrt(cosx)+1)(cosx +1)))#
# = (-sin^2x)/x^2 * 1/((sqrt(cosx)+1)(cosx +1))#
# = -((sinx)/x)^2 * 1/((sqrt(cosx)+1)(cosx +1))#
Evaluating limit as
# -(1)^1 * 1/((sqrt1+1)(1+1)) = -1/4#