Question #ad2ca

2 Answers
Dec 12, 2017

#f'(x)=(sinxcosx-x(cos^2x-sin^2x))/(sinxcosx)^2#

#=(2(1-2xcot(2x)))/sin(2x)#

Explanation:

#f(x)=x/(sinxcosx)=g(x)/(h(x))#

#g(x)=x#
#g'(x)=1#

#h(x)=sinxcosx#
#h'(x)=cosxcosx-sinxsinx=cos^2x-sin^2x#

Using the double angle formula, #h'(x)# can be simplified down to #cos(2x)#

#f'(x)=(h(x)g'(x)-h'(x)g(x))/(h(x))^2#

#=(sinxcosx-x(cos^2x-sin^2x))/(sinxcosx)^2#

Continuing with the double angle rules:

#=(sinxcosx-xcos(2x))/(sinxcosx)^2#

#=1/(sinxcosx)-(xcos(2x))/(sinxcosx)^2#

#sinxcosx=1/2(2sinxcosx)=1/2sin(2x)#

#f'(x)=1/(1/2sin(2x))-(xcos(2x))/(1/2sin(2x))^2#

#=2/sin(2x)-(xcos(2x))/(1/4sin^2(2x))#

#=2/sin(2x)-(4xcos(2x))/(sin^2(2x))#

#=2/sin(2x)-(4xcot(2x))/(sin(2x))#

#=(2-4xcot(2x))/sin(2x)#

#=(2(1-2xcot(2x)))/sin(2x)#

Dec 12, 2017

#color(blue)(1/(Cos x Sin x)-x/(Sin^2 x) + x/Cos^2 x)#

Explanation:

We are given a function of #x# that we must differentiate:

#f(x) = [x/(Sin x Cos x) ]# #color(red)(Function.1)#

#rArr f(x) = y = [x/(Sin x Cos x) ]#

We need to find the First Derivative of #f(x)#

By observing #f(x)# we know that we must use the Quotient Rule to differentiate .

Quotient Rule for finding the derivatives states that

#color(blue)((dy)/(dx)[f(x)/g(x)] = [(g(x)*f'(x) - f(x)*g'(x))/[g(x)]^2]#

Using the Quotient Rule, we can write our #color(red)(Function.1)# as

#=[d/(dx)[x]*[Cos x Sin x] -x*d/(dx) [ Cos x Sin x]]/[Cos x Sin x]^2#

Product Rule for finding the derivatives states that

#color(blue)((dy)/(dx)[f(x)*g(x)] = [(f'(x)*g(x) + f(x)*g'(x)]#

#=[1*[Cos x Sin x] -x*[d/(dx) [ Cos x]* Sin x+Cos x*d/(dx)[Sin x]]]/[Cos^2 x Sin^2 x]#

On simplification we get,

#=[[Cos x Sin x] -x[- Sin x* Sin x+Cos x Cos x]]/[Cos^2 x Sin^2 x]#

We can simplify further to get

#=[[Cos x Sin x] -x[- Sin^2 x+Cos^2 x]]/[Cos^2 x Sin^2 x]#

We can rearrange terms to get

#=[[Cos x Sin x] -x[Cos^2 x - Sin^2 x]]/[Cos^2 x Sin^2 x]#

We can simplify further to obtain

#=[Cos x Sin x]/[Cos^2 x Sin^2 x] -[x[Cos^2 x - Sin^2 x]]/[Cos^2 x Sin^2 x]#

We can rewrite the above expression as

#=[Cos x Sin x]/[[Cos x Sin x]*[Cos x Sin x]] -[x*Cos^2 x]/[Cos^2 x Sin^2 x] + [x*Sin^2 x]/[Cos^2 x Sin^2 x] #

We can now cancel terms as

#=[cancel(Cos x Sin x)]/[[cancel(Cos x Sin x)]*[Cos x Sin x]] -[x*cancel(Cos^2 x)]/[cancel(Cos^2 x) Sin^2 x] + [x*cancel(Sin^2 x)]/[Cos^2 x cancel(Sin^2 x)] #

In this step, we get

#1/(Cos x Sin x)-x/(Sin^2 x) + x/Cos^2 x# ....... Final Result

I hope you find this solution helpful.