Putting z=x-pi/4 show that limit of (1-tanx)/(1-sqrt2 sinx)=2 as x approaches to pi/4?
1 Answer
#= frac{tanz+tan frac{pi}{4}}{1-tanz tan frac{pi}{4}}#
#= frac{tanz + 1}{1 - tanz (1)}#
#= frac{1+ tanz}{1 - tanz}#
#= sinz cos frac{pi}{4} + cosz sin frac{pi}{4}#
#= 1/sqrt2 (sinz + cosz)#
#= lim_{z->0} (1 - (1+ tanz)/(1 - tanz))/(1-sqrt2 1/sqrt2 (sinz + cosz))#
#= lim_{z->0} ((1 -tan z - (1+ tanz))/(1 - tanz))/(1- sinz - cosz)#
#= lim_{z->0} (-2tanz)/((1- sinz - cosz)(1 - tanz))#
(Assuming limit exists)
#= lim_{z->0} (-2tanz)/(1- sinz - cosz)#
#= 2 lim_{z->0} (tanz)/(sinz + cosz - 1)#
#= 2 lim_{z->0} ((sinz + cosz - 1)/tanz)^(-1)#
#= 2 lim_{z->0} (sinz/tanz - (1-cosz)/tanz)^(-1)#
#= 2 lim_{z->0} (cosz - (1-cos^2z)/(tanz(1+cosz)))^(-1)#
#= 2 lim_{z->0} (1 - (sin^2z)/(tanz(1+cosz)))^(-1)#
#= 2 lim_{z->0} (1 - (sinzcosz)/(1+cosz))^(-1)#
#= 2 lim_{z->0} (1 - ((0)(1))/(1+1))^(-1)#
#= 2#