How do you use the limit definition of the derivative to find the derivative of #f(x)=-4x^2-5x-2#?

1 Answer
Dec 13, 2017

See below.

Explanation:

We start by finding the gradient in much the same way as we do for any function. namely:

#(y_2-y_1)/(x_2-x_1)#

If we have a point #P# on a curve with coordinates #(x, f(x))#, then another point #Q# near #P# has coordinates #(x+deltax, f(x+delta x))#, where #delta x # is a small increment of #x#. Then gradient is:

#(f(x+delta x)-f(x))/(x+delta x - x)#

And the derivative is:

#d/dx=lim_(delta x->0)((f(x+delta x)-f(x))/(x+delta x - x))#

From example:

#((-4(x+delta x)^2-5(x+delta x)-2)-(-4x^2-5x-2))/(x+delta x - x)#

simplifying

#(-4x^2-8xdelta x-4(deltax)^2-5x-5delta x-2+4x^2+5x+2)/(x+delta x - x)#

#->=(-8xdelta x-4(deltax)^2-5delta x)/(delta x )#

Cancelling #delta x#

#(-8x-4(deltax)-5)#

#d/dx=lim_(deltax->0)(-8x-4(deltax)-5)=-8x-5#