Question #7e03a

1 Answer
Dec 14, 2017

#(xe^xlogx)^'=(e^x+x*e^x)*logx+e^x/(ln10)#

Explanation:

#y=xe^xlogx#

Let:
#f=xe^x#
#g=logx#
Then: #(f*g)^'=f^'*g+f*g^'#

#y^'=(xe^x)'*logx+xe^x(logx)^'#

#(x*e^x)^'=x^'*e^x+x(e^x)^'#
#(e^x)^'=e^x(x)^'=e^x*1#
#(x*e^x)^'=1*e^x+x*e^x*1=e^x+xe^x#

#y^'=(e^x+x*e^x)*logx+xe^x(logx)^'#

I guess we are talking about logarithm with the base equal to 10
#(logx)^'=1/(x*ln10)#

#y^'=(e^x+x*e^x)*logx+cancelxe^x*1/(cancelx*ln10)#

#y^'=(e^x+x*e^x)*logx+e^x/(ln10)#