Find the derivative of #tan(ax+b)# from first principles?
1 Answer
# d/dx tan(ax+b) = asec^2(ax+b) #
Explanation:
Using the derivative definition, if:
# f(x) = tan(ax+b) #
Then, the derivative
# f'(x) = lim_(h rarr 0) ( f(x+h)-f(x) )/ h #
# \ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( tan(a(x+h)+b)-tan(ax+b) ) /h#
# \ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( tan((ax+b)+ah)-tan(ax+b) ) /h#
# \ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( (tan (ax+b)+tan ah)/(1-tan (ax+b) tan ah )-tan(ax+b) ) /h#
# \ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( (tan (ax+b)+tan ah - tanx(1-tan (ax+b) tan ah )) / ( 1-tan (ax+b) tan ah ) ) /h#
# \ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( tan (ax+b)+tan ah - tan(ax+b)+tan^2 (ax+b) tan ah ) / (h( 1-tan (ax+b) tan ah ) ) #
# \ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( tan ah (1+ tan^2(ax+b)) ) / (h( 1-tan (ax+b) tan ah ) ) #
# \ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( 1+ tan^2(ax+b)) / ( 1-tan (ax+b) tan ah ) * (tan ah)/h #
# \ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( 1+ tan^2(ax+b)) / ( 1-tan (ax+b) tan ah ) * lim_(h rarr 0) (tan ah)/h #
Consider the first limit:
# L_1 = lim_(h rarr 0) ( 1+ tan^2(ax+b)) / ( 1-tan (ax+b) tan ah ) #
# \ \ \ \ = ( 1+ tan^2(ax+b)) / ( 1-tan (ax+b) 0 ) #
# \ \ \ \ = 1+ tan^2(ax+b) #
# \ \ \ \ = sec^2(ax+b) #
And, now the second limit:
# L_2 = lim_(h rarr 0) (tan ah)/h #
# \ \ \ \ = lim_(h rarr 0) (sin ah)/(cos ah) * 1/h #
# \ \ \ \ = lim_(h rarr 0) (sin ah)/h * 1/(cos ah) #
# \ \ \ \ = lim_(h rarr 0) (asin ah)/(ah) * 1/(cos ah) #
# \ \ \ \ = lim_(h rarr 0) (asin ah)/(ah) * lim_(h rarr 0) 1/(cos ah) #
# \ \ \ \ = a \ lim_(theta rarr 0) (sin theta)/(theta) * lim_(h rarr 0) 1/(cos ah) #
And for this limit we have:
# lim_(theta rarr 0) (sin theta)/(theta) =1 # and# lim_(h rarr 0) 1/(cos ah) = 1#
Leading to:
# L_2 = a #
Combining these results we have:
# f'(x) = sec^2(ax+b) * a #
# \ \ \ \ \ \ \ \ \ = asec^2(ax+b) #