#x-sqrt(x+1)=0#
#x^2-x-1=0=>x=(1+sqrt(5))/2 and x=(1-sqrt(5))/2#
The function is below the x axis in the interval:
#((1-sqrt(5))/2, (1+sqrt(5))/2)#
So we need two integrals:
#A=-int_(1)^((1+sqrt(5))/2)(x^2-sqrt(x+1)) dx+int_((1+sqrt(5))/2)^(7)(x^2-sqrt(x+1)) dx#
#A=-int_(1)^((1+sqrt(5))/2)(x^2-sqrt(x+1)) dx#
#->=[1/3x^3-2/3(x+1)^(3/2)]^((1+sqrt(5)))-[1/3x^3-2/3(x+1)^(3/2)]_(1)#
#=-[1/3((1+sqrt(5))/2)^3-2/3((1+sqrt(5))/2+1)^(3/2)]-[1/3(1)^3-2/3((1+sqrt(5))/2+1)^(3/2)]=0.04738#
#A=int_((1+sqrt(5))/2)^(7)(x^2-sqrt(x+1)) dx#
#->=[1/3x^3-2/3(x+1)^(3/2)]^(7)-[1/3x^3-2/3(x+1)^(3/2)]_((1+sqrt(5))/2)#
#->=[1/3(7)^3-2/3(7+1)^(3/2)]^(7)-[1/3((1+sqrt(5))/2)^3-2/3(((1+sqrt(5))/2)+1)^(3/2)]_((1+sqrt(5))/2)=100.84806#
Area#=100.84806+0.04738=100.89# units squared.
Graph: