How do you combine like terms in #(\frac { 34} { 7} b ^ { 3} + \frac { 9} { 7} b ^ { 4} + 7b ^ { 2} ) - ( \frac { 5} { 4} b ^ { 3} + 2b ^ { 4} + \frac { 9} { 4} b ^ { 2} )#?

1 Answer
Dec 16, 2017

#-5/7b^4 +101/28b^2 +19/4b^2#

Explanation:

Remove the brackets first. The negative sign will change the signs in the second bracket.

Identify the like terms:

#color(blue)(34/7b^3) +color(red)(9/7b^4) +color(green)(7b^2) color(blue)(-5/4b^3)color(red)( -2b^4)color(green)( -9/4b^2)#

#=color(red)(9/7b^4 -2b^4) color(blue)(+34/7b^3 -5/4b^3) +color(green)(7b^2-9/4b^2)#

#=color(red)(1 2/7b^4 -2b^4) +color(blue)((136b^2-35b^2)/28) +color(green)(7b^2-2 1/4b^2)#

#=color(red)(-5/7b^4) color(blue)(+101/28b^3) +color(green)(19/4b^2)#

Note the following:

  • The terms are in descending powers of #b#

  • Improper fractions are used - they were given

  • the fractions are in simplest form