Who do I prove that the RHS is equal to LHS? Sin2x (tan x + cot x) = 2

2 Answers
Dec 17, 2017

Develop the left side by using the trig identity:
#sin 2x -= 2sin x*cos x#

#L.S = 2sin xcos x (sin x/cos x+ cos x/sin x) #

#= 2sin xcos x* ((cos^2 x + sin^2 x))/(sin xcos x ) #

#= 2(cos^2 x + sin^2 x) = 2#

As # cos^2x + sin^2x = 1 #

#therefore # Proved.

Dec 17, 2017

See below.

Explanation:

Using identities:

#color(red)(tanx =sinx/cosx)#

#color(red)(cotx=cosx/sinx)#

#color(red)(sin(2x)=2sinxcosx#

#color(red)(sin^2x+cos^2x=1)#
.......................................................................................................................................

#sin(2x)(tanx+cotx)#

#sin(2x)(sinx/cosx+cosx/sinx)#

#sin(2x)((sin^2x+cos^2x)/(sinxcosx))#

#sin(2x)((1)/(sinxcosx))#

#2sinxcosx((1)/(sinxcosx))#

#(2sinxcosx)/(sinxcosx)#

#(2cancel(sinxcosx))/(cancel(sinxcosx))=2#