Could you differentiate this function? f(x)=6x^2ln(4x)

2 Answers
Dec 16, 2017

#12x*ln(4x)+6x#

Explanation:

first use product rule:

#f'(x) = ln(4x)*d/dx(6x^2)+6x^2*d/dx(ln(4x))#

#=ln(4x)*12x+(6x^2)/(4x)*d/dx(4x)# (power rule, ln(x) derivative, and chain rule)

#=ln(4x)*12x+(3/2x*4)#
#=12x*ln(4x)+6x#

Dec 17, 2017

#f'(x)=12(1+ln4x)#

Explanation:

#"differentiate using the "color(blue)"product rule"#

#"given "f(x)=g(x)h(x)" then"#

#f'(x)=g(x)h'(x)+h(x)g'(x)larrcolor(blue)"product rule"#

#g(x)=6x^2rArrg'(x)=12x#

.#h(x)=ln4xrArrh'(x)=1/(4x)xxd/dx(4x)=1/(4x) xx4=1/x#

#rArrf'(x)=6x^2 xx1/x+ln4x.12x#

#=6x+12xln4x#

#=6x(1+2ln4x)#