Question #2e813

1 Answer

#lim_"x ->oo" sqrt(x+1)/(e^sqrtx)=0#

Explanation:

This is of the form #lim_"x ->oo" sqrt(x+1)/(e^sqrtx)=oo/oo#

Applying L'Hospitals rule:

#lim_"x ->oo" sqrt(x+1)/(e^sqrtx)=lim_"x ->oo" (1/(2sqrt(x+1)))/((e^sqrtx)(1/(2sqrt(x))))#

#lim_"x ->oo" (2sqrt(x))/((e^sqrtx)(2sqrt(x+1)))=lim_"x ->oo" (cancel2sqrt(x))/((e^sqrtx)(cancel2sqrt(x+1))#

#lim_"x ->oo" ((sqrt(x))/((e^sqrtx)(sqrt(x+1))))*((sqrt(1/x))/(sqrt(1/x)))#

#lim_"x ->oo" (sqrt(1))/((e^sqrtx)(sqrt(1+1/x)))=lim_"x ->oo" (1)/((e^sqrtx)(sqrt(1+1/x)))=1/(e^oo*sqrt(1+0))=1/oo=0#

God bless....I hope the explanation is useful.