Prove that 1-tan^2x/1+tan^2x = cos2x is an identity?

2 Answers
Dec 17, 2017

Please see below.

Explanation:

#(1-tan^2x)/(1+tan^2x)#

= #(1-sin^2x/cos^2x)/(1+sin^2x/cos^2x)#

= #((cos^2x-sin^2x)/cos^2x)/((cos^2x+sin^2x)/cos^2x)#

= #(cos^2x-sin^2x)/(cos^2x+sin^2x)#

= #cos^2x-sin^2x#

= #cos2x#

Dec 17, 2017

#RHS=cos2x#

#=cos(x+x)#

#=cosx*cosx-sinx*sinx#

#=cos^2x-sin^2x#

#=(cos^2x-sin^2x)/(cos^2x+sin^2x)#

#=(cos^2x/cos^2x-sin^2x/cos^2x)/(cos^2x/cos^2x+sin^2x/cos^2x)#

#=(1-tan^2x)/(1+tan^2x)=LHS#