What is the equation of the tangent line of #f(x)=2x^2+xe^x# at #x=5#?

2 Answers
Dec 18, 2017

Equation of tangent line is #(20+6e^5)x-y=50+30e^5#

Explanation:

The slope of the tangent to curve #y=f(x)# is given by #f'(x)#

Here #f(x)=2x^2+xe^x# and #f'(x)=4x+e^x+xe^x=4x+e^x(1+x)#

As we are seeking tangent at #x=5#,

we are seeking tangent at #(5,50+5e^5)#

and slope at #x=5# is #20+e^5*6=20+6e^5#

Hence equation of tangent is

#y-50-5e^5=(20+6e^5)(x-5)#

or #y-50-5e^5=20x-100+6e^5x-30e^5#

or #(20+6e^5)x-y=50+30e^5#

Dec 18, 2017

See below.

Explanation:

First we need to differentiate the function to find the gradient of the tangent line.

We need to use the product rule for the second term.

Product rule states that:

#f'(a*b)=b*f'(a)+a*f'(b)#

Let #a= x and b=e^x#

#f'(a*b)=e^x*1+x*e^x=e^x+xe^x#

#f'(2x^2)=4x#

#:.#

#f'(2x^2+xe^x)=4x+e^x+xe^x#

#f'(5)=4(5)+e^5+5e^5=20+6e^5#

Equation of line:

#y-(50+5e^5)=(20+6e^5)(x-5)#

#y=(20+6e^5)x-25(2+e^5)#

enter image source here