Question #7f58f

1 Answer
Dec 21, 2017

#intsec^3(2x)dx=((ln|tan(2x)+sec(2x)|)+sec(2x)tan(2x))/4+"C"#

Explanation:

Solving #intsec^3(2x)# #dx#

Apply u-substitution

Let #color(blue)(u=2x#
Thus, #color(red)(du=2dx->1/2du=dx#

Rewriting the integral...

#int color(red)(1/2)sec^3(color(blue)u)# #color(red)(du#

Take out the constant:# (1/2)#

#color(red)(1/2)intsec^3(color(blue)u)color(red)(du#

Solving #intsec^3u# #du# we must apply the secant reduction formula which states:

#intsec^n u# #du = (n-2)/(n-1)intsec^(n-2)u# #du+(sec^(n-2)utanu)/(n-1):n>=3#

Thus with #n=3#

#intsec^3u# #du = (3-2)/(3-1)intsec^(3-2)u# #du+(sec^(3-2)utanu)/(3-1)#

#intsec^3u# #du=1/2intsecu# #du+(secutanu)/(2)#

We now have the standard integral #intsecu# #du# which yields #ln|tanu+secu|#

Thus,

#intsec^3u# #dx=(ln|tanu+secu|)/2+(secutanu)/(2)+"C"#

#

Simplifying, we can factor out a #1/2# thus leading to the complete solution to the integral

#intsec^3u# #dx=1/2{(ln|tanu+secu|)+(secutanu)}+"C"#

Going back to our original integral:

#color(red)(1/2)intsec^3(color(blue)u)color(red)(du#

We can now write:

#1/2{1/2[(ln|tanu+secu|)+secutanu]}+"C"#

Simplify:

#((ln|tanu+secu|)+secutanu)/4+"C"#

And lastly substituting back #2x# for #u# we get:

#((ln|tan(2x)+sec(2x)|)+sec(2x)tan(2x))/4+"C"#