Question #6c5f5

1 Answer
Dec 23, 2017

#Lim_(xrarr0^+)(e^(3x)-5x)^(1/x)=e^-2#

Explanation:

#Lim_(xrarr0^+)(e^(3x)-5x)^(1/x)#

We have to apply Euler's identity: #e^lnx=x#
Then we get this:

#e^(Lim_(xrarr0^+)ln(e^(3x)-5x)^(1/x))#

To make it look simple let's evaluate limit first

#Lim_(xrarr0^+)ln(e^(3x)-5x)^(1/x)=Lim_(xrarr0^+)1/xln(e^(3x)-5x)#

#Lim_(xrarr0^+)(ln(e^(3x)-5x))/x=0/0#

Using L'Hopitals rule:

#Lim_(xrarr0^+)(1/(e^(3x)-5x)*(3e^(3x)-5))/1#

#Lim_(xrarr0^+)(3e^(3x)-5)/(e^(3x)-5x)=(3*1-5)/(1-5*0)=-2/1=-2#

So the answer is: #e^-2#