If the roots of #2x^2-3x+6 = 0# are #p# and #q#, then what quadratic equation has roots #p^2+2# and #q^2+2# ?

2 Answers
Dec 25, 2017

#4x^2-49x+118=0#

Explanation:

.

#2x^2-3x-6=0#

#x=(3+-sqrt(9-4(2)(-6)))/4=(3+-sqrt(9+48))/4=(3+-sqrt57)/4#

#p=(3+sqrt57)/4#

#q=(3-sqrt57)/4#

#p^2+2=((3+sqrt57)/4)^2+2=(9+57+6sqrt57)/16+2#

#p^2+2=(66+6sqrt57)/16+2=(33+3sqrt57)/8+2=(33+3sqrt57+16)/8#

#p^2+2=(49+3sqrt57)/8#

#q^2+2=((3-sqrt57)/4)^2+2=(9+57-6sqrt57)/16+2#

#q^2+2=(33-3sqrt57)/8+2=(33-3sqrt57+16)/8#

#q^2+2=(49-3sqrt57)/8#

The equation would be:

#(x-(49+3sqrt57)/8)(x-(49-3sqrt57)/8)=0#

#x^2-x((49-3sqrt57)/8)-x((49+3sqrt57)/8)+(49^2-513)/64=0#

#x^2-x((49-3sqrt57+49+3sqrt57)/8)+59/2=0#

#x^2-98/8x+59/2=0#

#x^2-49/4x+59/2=0#

#4x^2-49x+118=0#

Dec 25, 2017

#4x^2-49x+118 = 0#

Explanation:

Dividing through by #2# we get:

#x^2-3/2x-3 = (x-p)(x-q)#

#color(white)(x^2-3/2x-3) = x^2-(p+q)x+pq#

Hence:

#{ (p+q = 3/2), (pq = -3) :}#

Then:

#p^2+q^2 = (p+q)^2-2pq = (3/2)^2-2(-3) = 9/4+6 = 33/4#

So:

#(p^2+2) + (q^2+2) = 33/4+4 = 49/4#

#(p^2+2)(q^2+2) = p^2q^2+2(p^2+q^2)+4#

#color(white)((p^2+2)(q^2+2)) = (-3)^2+2(33/4)+4 = 9+33/2+4 = 59/2#

Hence a quadratic equation with roots #p^2+2# and #q^2+2# is:

#x^2-49/4x+59/2 = 0#

Multiplying through by #4# we get:

#4x^2-49x+118 = 0#