How to answer this using coordinate geometry- section formula ?

enter image source here

2 Answers
Dec 29, 2017

#P (6,3)#

Explanation:

.

#M (10,13)#, #N (4,-2)#, #P (x,y)#

Using the distance formula:

#MN=sqrt((4-10)^2+(-2-13)^2)=sqrt(36+225)=sqrt261#

#MP=sqrt((x-10)^2+(y-13)^2)#

#PN=sqrt((4-x)^2+(-2-y)^2)#

#MP=2/3MN#, and #PN=1/3MN#

#(MN)^2=261#

#(MP)^2=4/9(MN)^2=4/6(261)=116#

#(PN)^2=1/9(MN)^2=1/9(261)=29#

#(MP)^2=x^2-20x+100+y^2-26y+169=116#

#(PN)^2=x^2-8x+16+y^2+4y+4=29#

#1)# #x^2+y^2-20x-26y=-153#

#2)# #x^2+y^2-8x+4y=9#

Subtracting equation #2# from equation #1#, we get:

#-12x-30y=-162#. Dividing it by #6# we get:

#2x+5y=27#

#y=(27-2x)/5#

We substitute this for #y# in equation #2#:

#x^2+((27-2x)/5)^2-8x+4((27-2x)/5)=9#

#x^2+(729-108x+4x^2)/25-8x+(108-8x)/5-9=0#

We multiply the equation by #25# to get rid of fractions:

#25x^2+729-108x+4x^2-200x+540-40x-225=0#

Combining like terms, we get:

#29x^2-348x+1044=0#

Dividing it by #29#, we get:

#x^2-12x+36=0#

#(x-6)^2=0#

#x=6#

#y=(27-2x)/5=(27-2(6))/5=(27-12)/5=15/5=3#

#P (6,3)#

Dec 29, 2017

#P=(6,3)#

Explanation:

#"given a line MN being divided by a point P"#
#"in the ratio m : n"#

#"if "M=(x_1,y_1)" and "N=(x_2,y_2)" then P "#

#"using the "color(blue)"section formula"#

#color(red)(bar(ul(|color(white)(2/2)color(black)(P=((nx_1+mx_2)/(m+n)),((ny_1+my_2)/(m+n)))color(white)(2/2)|)))#

#2MN=3MPrArrMP=2/3MN" and "PN=1/3MN#

#(x_1,y_1)=(10,13)" and "(x_2,y_2)=(4,-2)#

#"and the ratio "m:n=2:1#

#rArrP=((10+(2xx4))/(2+1),(13+(2xx-2))/(2+1))#

#color(white)(rArrP)=(18/3,9/3)=(6,3)#