Let #y=1-(1/(1+x^2))#
Determination of #x# in terms of #y#
#y=(1+x^2-1)/(1+x^2)=x^2/(1+x^2)#
#y(1+x^2)=x^2#
#x^2(1-y)=y#
#x^2=(y)/(1-y)#
#x=sqrt((y)/(1-y))#
In order for #x# to have a solution, solve this inequality
#y/(1-y)>=0#
Build a sign chart
#color(white)(aaaa)##y##color(white)(aaaa)##-oo##color(white)(aaaaaa)##0##color(white)(aaaaaaa)##1##color(white)(aaaaaa)##+oo#
#color(white)(aaaa)##y##color(white)(aaaaaaaaa)##-##color(white)(aa)##0##color(white)(aaa)##+##color(white)(aaaaa)##+#
#color(white)(aaaa)##1-y##color(white)(aaaaaa)##+##color(white)(aaaaa)##color(white)(a)##+##color(white)(aa)##||##color(white)(aa)##-#
#color(white)(aaaa)##x##color(white)(aaaaaaaaa)##-##color(white)(aa)##0##color(white)(aaa)##+##color(white)(aaa)##||##color(white)(aa)##-#
Therefore,
The range of y=f(x) is
#y in [0,1)#