What is the range of the function, #f(x) = 1- 1/(1+x^2)#?

2 Answers
Dec 29, 2017

Range is #(0,1]#.

Explanation:

As #x^2# can take value from #0# to #oo#,

#1/(1+x^2)# can take values from #1# to #0#

and #1-1/(1+x^2)# can take values from #01# to #1# i.e. range is #(0,1]#.

graph{1-1/(1+x^2) [-10, 10, -5, 5]}

Dec 29, 2017

The range is #f(x) in [0,1)#

Explanation:

Let #y=1-(1/(1+x^2))#

Determination of #x# in terms of #y#

#y=(1+x^2-1)/(1+x^2)=x^2/(1+x^2)#

#y(1+x^2)=x^2#

#x^2(1-y)=y#

#x^2=(y)/(1-y)#

#x=sqrt((y)/(1-y))#

In order for #x# to have a solution, solve this inequality

#y/(1-y)>=0#

Build a sign chart

#color(white)(aaaa)##y##color(white)(aaaa)##-oo##color(white)(aaaaaa)##0##color(white)(aaaaaaa)##1##color(white)(aaaaaa)##+oo#

#color(white)(aaaa)##y##color(white)(aaaaaaaaa)##-##color(white)(aa)##0##color(white)(aaa)##+##color(white)(aaaaa)##+#

#color(white)(aaaa)##1-y##color(white)(aaaaaa)##+##color(white)(aaaaa)##color(white)(a)##+##color(white)(aa)##||##color(white)(aa)##-#

#color(white)(aaaa)##x##color(white)(aaaaaaaaa)##-##color(white)(aa)##0##color(white)(aaa)##+##color(white)(aaa)##||##color(white)(aa)##-#

Therefore,

The range of y=f(x) is

#y in [0,1)#