If # u = arcsin( (x^2+y^2) / (x+y) ) # then does # x(partial u)/(partial x) + y(partial u)/(partial y) = tan u#?

1 Answer
Dec 29, 2017

The expression is valid.

Explanation:

We have:

# u = arcsin( (x^2+y^2) / (x+y) ) #

Using the known result:

# d/dx arcsinx = 1/sqrt(1-x^2) #

In conjunction with the chain rule and quotient rule, we can calculate the Partial Derivative wrt #x#:

# (partial u)/(partial x) = 1/sqrt( 1- ( (x^2+y^2) / (x+y) )^2) \ (partial)/(partial x) (x^2+y^2) / (x+y) #

# \ \ \ \ \ \ = 1/sqrt( 1- ( (x^2+y^2) / (x+y) )^2) \ (partial)/(partial x) (x^2+y^2) / (x+y) #

# \ \ \ \ \ \ = 1/sqrt( 1- ( (x^2+y^2) / (x+y) )^2) \ ( (x+y)(2x) - (x^2+y^2)(1) ) / (x+y)^2#

# \ \ \ \ \ \ = 1/sqrt( 1- ( (x^2+y^2) / (x+y) )^2) \ ( 2x^2+2xy - x^2 - y^2 ) / (x+y)^2#

# \ \ \ \ \ \ = ( x^2+2xy - y^2 )/((x+y)^2sqrt( 1- ( (x^2+y^2) / (x+y) )^2)) #

Similarly:

# (partial u)/(partial y) = ( y^2+2xy - x^2 )/((x+y)^2sqrt( 1- ( (x^2+y^2) / (x+y) )^2)) #

And so we compute the LHS of the required result:

# x(partial u)/(partial x) + y(partial u)/(partial y) #

# = ( x(x^2+2xy - y^2) )/((x+y)^2sqrt( 1- ( (x^2+y^2) / (x+y) )^2)) + ( y(y^2+2xy - x^2) )/((x+y)^2sqrt( 1- ( (x^2+y^2) / (x+y) )^2)) #

# = ( x^3+2x^2y -x y^2 + y^3+2xy^2 - x^2y )/((x+y)^2sqrt( 1- ( (x^2+y^2) / (x+y) )^2)) #

# = ( x^3+x^2y + y^3+xy^2 )/((x+y)^2sqrt( 1- ( (x^2+y^2) / (x+y) )^2)) #

# = ( (x+y)(x^2+y^2) )/((x+y)^2sqrt( 1- ( (x^2+y^2) / (x+y) )^2)) #

# = ( (x^2+y^2) )/((x+y)sqrt( 1- ( (x^2+y^2) / (x+y) )^2)) # ...[A]

We now seek an expression for #tanu#:

# cos^2u = 1 - ( (x^2+y^2)/(x+y))^2 => cosu = sqrt(1 - ( (x^2+y^2)/(x+y))^2) #

And by definition:

# tan u = sinu/cosu #
# \ \ \ \ \ \ \ \ \= { (x^2+y^2)/(x+y) } / {sqrt(1 - ( (x^2+y^2)/(x+y))^2)} #

# \ \ \ \ \ \ \ \ \= { (x^2+y^2) } / {(x+y)sqrt(1 - ( (x^2+y^2)/(x+y))^2)} #

Which is the same as [A], and thus we confirm that

# x(partial u)/(partial x) + y(partial u)/(partial y) = tan u#