How do you integrate #x^4/(x-1)^3 # using partial fractions?

1 Answer
Dec 30, 2017

The answer is #=-1/(2(x-1)^2)-4/(x-1)+6ln(|x-1|)+x^2/2+3x+C#

Explanation:

The degree of the numerator is greater than the degree of the denominator

Perform a polynomial long division

#x^4/(x-1)^3=(6x^2-8x+3)/(x-1)^3+x+3#

Now, we can perform the decomposition into partial fractions

#(6x^2-8x+3)/(x-1)^3=A/(x-1)^3+B/(x-1)^2+C/(x-1)#

#=(A+B(x-1)+C(x-1)^2)/(x-1)^3#

The denominators are the same, compare the numerators

#(6x^2-8x+3)=A+B(x-1)+C(x-1)^2#

Let #x=1#, #=>#, #A=1#

Let #x=0#, #=>#, #3=A-B+C#

#=>#, #C-B=2#

Coefficients of #x^2#

#6=C#

#B=6-2=4#

Therefore,

#(6x^2-8x+3)/(x-1)^3=1/(x-1)^3+4/(x-1)^2+6/(x-1)#

So,

#x^4/(x-1)^3=1/(x-1)^3+4/(x-1)^2+6/(x-1)+x+3#

Finally,

#int(x^4dx)/(x-1)^3=int(dx)/(x-1)^3+4int(dx)/(x-1)^2+6int(dx)/(x-1)+intxdx+int3dx#

#=-1/(2(x-1)^2)-4/(x-1)+6ln(|x-1|)+x^2/2+3x+C#