How do you solve #\frac{9}{16} x - \frac{5}{3} < \frac{5}{6} x + \frac{8}{3}#?

1 Answer
Jan 2, 2018

#x<-16#

Explanation:

Solve:

#9/16x-5/3<5/6x+8/3#

Simplify #9/16x# to #(9x)/16#.

#(9x)/16-5/3<5/6x+8/3#

Simplify #5/6x# to #(5x)/6#.

#(9x)/16-5/3<(5x)/6+8/3#

In order to add or subtract fractions, the denominators must be the same. We can use prime factorization to determine the LCD.

#3=3^1#

#6=2xx3#

#16=2^4#

Multiply the prime factors with the largest exponents.

LCD: #3^1xx2^4=48#

Multiply both sides of the inequality by #48#. This will make all denominators #1#.

#(color(red)cancel(color(black)(48))^3xx(9x)/color(red)cancel(color(black)(16))^1)-(color(red)cancel(color(black)(48))^16xx5/color(red)cancel(color(black)(3))^1)<(color(red)cancel(color(black)(48))^8xx(5x)/color(red)cancel(color(black)(6))^1)+(color(red)cancel(color(black)(48))^16xx8/color(red)cancel(color(black)(3))^1)#

Simplify.

#27x-80<40x+128#

Subtract #27x# from both sides.

#-80<40x+128-27x#

Simplify.

#-80<13x+128#

Subtract #128# from both sides.

#-80-128<13x#

Simplify.

#-208<13x#

Divide both sides by #13#.

#-208/13##<##x#

Simplify.

#-16##<##x#

Switch sides.

#x<-16#