How can you factorize #x^2 + 4x -4# ?
I found #(x+2+2sqrt2)(x+2-2sqrt2)# by using delta but isn't there sth better? Thanks
I found
2 Answers
Jan 2, 2018
use the quadratic formula
Explanation:
substitute: a=1
b=4
c=-4
Jan 2, 2018
Explanation:
#"to factorise find the roots using the "color(blue)"quadratic formula"#
#"given a quadratic in standard form ";ax^2+bx+c=0#
#"then the roots can be found using the quadratic formula"#
#•color(white)(x)x=(-b+-sqrt(b^2-4ac))/(2a)#
#x^2+4x-4=0" is in standard form"#
#"with "a=1,b=4" and "c=-4#
#rArrx=(-4+-sqrt(16+16))/2=(-4+-sqrt32)/2=(-4+-4sqrt2)/2#
#rArrx=-2+-2sqrt2larrcolor(blue)"roots(zeros)"#
# rArr(x-(-2-2sqrt2))(x-(-2+2sqrt2))" factors"#
#rArrx^2+4x-4=(x+2-2sqrt2)(x+2-2sqrt2)#