Question #dbf21

2 Answers
Jan 3, 2018

#(dy)/(dx) = 2/x#

Explanation:

Starting with the equation:

#y=ln(3x^2)#

We wish to find the derivative. To do so, we must apply the chain rule:

#(dy)/(dx)=d/(dx) ln(3x^2) = d/(dv) ln(v) * d/(dx)v#

where #v=3x^2#. We know that:

#d/(dv) ln(v) = 1/v = 1/(3x^2)#

and:

#d/(dx)v=d/(dx) (3x^2) = 3*d/(dx) x^2 = 3*2*x = 6x#

Putting it together we get:

#(dy)/(dx) = (6x)/(3x^2) = 2/x#

Jan 3, 2018

#2/x#

Explanation:

Using the chain rule:

#:.#

#dy/dx=dy/(du)*(du)/(dx)#

Let #u = 3x^2#

#dy/dxln(u)=dy/(du)ln(u)*(du)/dx(u)=1/u*6x=1/(3x^2)*6x=color(blue)(2/x)#