#color(brown)("Formatting tip - write "color(white)("d")" hash y = a root(3)(x)+b hash ")#
#color(brown)( "giving: ............."color(white)("ddddddddddddd") y=a root(3)(x)+b #
Have a look at: https://socratic.org/help/symbols
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Set point 1 as #P_1->(x_1,y_1)=(-1,4)#
Set point 2 as #P_2->(x_2,y_2)=(1,-8) color(red)( larr" +8 corrected to -8")#
Given:# color(white)("d") y=aroot(3)(x)+b#
#P_1->+4=aroot(3)(-1)+b" "...............Equation(1)" checked"#
#P_2->color(white)(".")color(red)(-8)=aroot(3)(+1)+b" "...............Equation(2)" corrected"#
#color(blue)("Determine the value of "b)#
Note that:
#(-1)xx(-1)xx(-1)color(white)("d")=color(white)("d")(-1)" so "root(3)(-1)=-1#
Note that #root(3)(+1)=1#
So we have:
#color(white)("d")+4=-a+b" "....................Equation(1_a)#
#ul(color(white)("d")-8=+a+b)" "....................Equation(2_a)#
#color(green)(color(white)("d")-4=color(white)(".dd")0+2b) larr" "Eqn(1_a)+Eqn(2_a)#
Divide both sides by #color(red)(2)#
#color(green)(-4/color(red)(2)=(2b)/color(red)(2))#
#-2=bcolor(white)("d")# more formally presented as: #b=-2#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the value of "a)#
Choosing #Equation(2_a)# substitute for #b# where #color(red)(b=-2)#
#color(green)(-8=+a+color(red)(b) color(white)("ddd") -> color(white)("ddd")-8=a+(color(red)(-2)))#
Add 2 to both sides
#color(green)(color(white)("dddddddddddddd")->color(white)("ddd")-6=a)#
More formally #a=-6#
color(white)("d")