Question #9c615

2 Answers
Jan 4, 2018

#cos((11pi)/12) = -sqrt(2+sqrt3)/2#

Explanation:

The identity for the half angle of the cosine is:

#cos(x/2) = +-sqrt((1+cos(x))/2#

We are about to substitute #x/2 = (11pi)/12# but, before we do that, we must observe that #(11pi)/12# is in the second quadrant. The cosine function is negative in the second quadrant, therefore, we must use the negative value:

#cos(x/2) = -sqrt((1+cos(x))/2#

Substitute #x/2 = (11pi)/12# and #x = (11pi)/6# into the identity:

#cos((11pi)/12) = -sqrt((1+cos((11pi)/6))/2#

Substitute #cos((11pi)/6)= sqrt3/2#:

#cos((11pi)/12) = -sqrt(((1+sqrt3/2))/2)#

#cos((11pi)/12) = -sqrt((((2+sqrt3)/2))/2)#

#cos((11pi)/12) = -sqrt((2+sqrt3)/4)#

#cos((11pi)/12) = -sqrt(2+sqrt3)/2#

Jan 4, 2018

#cos((11pi)/12)=-(sqrt(2+sqrt3))/2#

Explanation:

.

#cos^2x=(1+cos2x)/2#

#cos^2((11pi)/12)=(1+cos((11pi)/6))/2=(1+(sqrt3)/2)/2=((2+sqrt3)/2)/2=(2+sqrt3)/4#

#cos((11pi)/12)=-(sqrt(2+sqrt3))/2#