The graph of the function #(x^2 + y^2 + 12x + 9)^2 = 4(2x + 3)^3# is a Tricuspoid as shown below. (a) Find the point on the curve, above x-axis, with x = 0? (b) Find slope of tangent line to the point in part (a)?

enter image source here

1 Answer
Jan 5, 2018

(a) #(1.18,0)# and (b) #y=-0.68125x+1.18#

Explanation:

When #x=0#, #(x^2+y^2+12x+9)^2=4(2x+3)^3# reduces to

#(y^2+9)^2=108# or #y^4+18y^2-27=0#

and #y^2=(-18+-sqrt(18^2-4xx1xx(-27)))/2#

= #(-18+-sqrt432)/2=-9+-6sqrt3#

and ignoring #-9-6sqrt3# as it is negative

#y=+-sqrt(6sqrt3-9)#

(a) and above #x=0# the point is #(sqrt(6sqrt3-9),0)# or #(1.18,0)#

(b) For slope of tangent we should find the first derivative of function #f(x,y)=0#. It is

#2(x^2+y^2+12x+9)(2x+2y(dy)/(dx)+12)=12(2x+3)^2xx2#

and when #x=0# and #y=sqrt(6sqrt3-9)#, this becomes

#2(6sqrt3-9+9)(2sqrt(6sqrt3-9)(dy)/(dx)+12)=216#

or #24sqrt3sqrt(6sqrt3-9)(dy)/(dx)=216-144sqrt3#

and #(dy)/(dx)=(216-144sqrt3)/(24sqrt3sqrt(6sqrt3-9))=(3sqrt3-6)/sqrt(6sqrt3-9)#

= #-0.68125#

and equation of tangent is #y=-0.68125x+1.18#

graph{(y+0.68125x-1.18)((x^2+y^2+12x+9)^2-4(2x+3)^3)=0 [-5, 5, -2.5, 2.5]}