What is it simplified? Thanks for the answer.

enter image source here

1 Answer
Jan 6, 2018

# 3/sqrt10-1/sqrt2#.

Explanation:

We will attempt the following more General Solution :

#"Add : "(1-sqrt(1^2-1))/sqrt(1*2)+(2-sqrt(2^2-1))/sqrt(2.3)+(3-sqrt(3^2-1))/sqrt(3*4)+..."upto m terms"#.

Clearly, the General #n^(th)# Term, i.e., #T_n#, is given by,

#T_n=(n-sqrt(n^2-1))/sqrt(n(n+1))#,

#=n/sqrt(n(n+1))-sqrt(n^2-1)/sqrt(n(n+1))#.

#=(sqrtn*sqrtn)/(sqrtnsqrt(n+1))-(sqrt(n+1)sqrt(n-1))/(sqrtnsqrt(n+1))#,

#rArr T_n=sqrt(n/(n+1))-sqrt((n-1)/n)............................(ast)#.

#"Therefore, the sum "S_m=sum_(n=1)^(n=m)T_n#,

#=T_1+T_2+T_3+...+T_(m-1)+T_m#,

#={cancelsqrt(1/2)-sqrt(0/1)}+{cancelsqrt(2/3)-cancelsqrt(1/2)}+{cancelsqrt(3/4)-cancelsqrt(2/3)}+...+{cancelsqrt((m-1)/m)-cancelsqrt((m-2)/(m-1))}+{sqrt(m/(m+1))-cancelsqrt((m-1)/m)}...[because, (ast)]#,

#rArr S_m=sqrt(m/(m+1))-sqrt(0/1)=sqrt(m/(m+1))#.

Now, addressing to our case,

#"The Reqd. Sum="S_9-T_1=sqrt(9/10)-(1-sqrt(1^2-1))/sqrt(1*2)#,

#=sqrt(9/10)-1/sqrt2=3/sqrt10-1/sqrt2#.

Enjoy Maths., and Spread the Joy!