How to factorize this? #2x^2-6x+3#

2 Answers
Jan 7, 2018

You can not derive whole number factors for this question
#x=3/2+-sqrt(3)/2# Exact values

#x~~2.366 and 0.634# Approximate values

Explanation:

Set #y=0=2x^2-6x+3#

Compare to #y=ax^2+bx+c# where #a=2;b=-6;c=3#

Worth committing this on to memory #x=(-b+-sqrt(b^2+4ac))/(2a)#

#x=(+6+-sqrt(6^2-4(2)(3)))/(2(2))#

#x=3/2+-sqrt(12)/4#

#x=3/2+-sqrt(3xx4)/4#

#x=3/2+-(2sqrt(3))/4#

#x=3/2+-sqrt(3)/2#

#x~~2.366 and 0.634# to 3 decimal places

Tony B

Jan 7, 2018

#(2(x-3/2-sqrt3/2)(x-3/2+sqrt3/2)#

Explanation:

#"take out a common factor of 2"#

#rArr2x^2-6x+3=2(x^2-3x+3/2)#

#"find the roots of the quadratic hence the factors"#

#"using the "color(blue)"quadratic formula"#

#•color(white)(x)x=(-b+-sqrt(b^2-4ac))/(2a)#

#a=1,b=-3" and "c=3/2#

#x=(3+-sqrt(9-6))/2=3/2+sqrt3/2#

#rArrx^2-3x+-3/2#

#=(x-(3/2+sqrt3/2))(x-(3/2-sqrt3/2))#

#=(x-3/2-sqrt3/2)(x-3/2+sqrt3/2)#

#rArr2x^2-6x+3#

#=2(x-3/2-sqrt3/2)(x-3/2+sqrt3/2)#