How do you find #lim t(sqrt(t+1)-sqrtt)# as #t->oo#?
2 Answers
Explanation:
#lim_(t->oo) t(sqrt(t+1)-sqrt(t))#
#=lim_(t->oo) (t(sqrt(t+1)-sqrt(t))(sqrt(t+1)+sqrt(t)))/(sqrt(t+1)+sqrt(t))#
#=lim_(t->oo) (t((t+1)-t))/(sqrt(t+1)+sqrt(t))#
#=lim_(t->oo) t/(sqrt(t+1)+sqrt(t))#
#=lim_(t->oo) sqrt(t) * sqrt(t)/(sqrt(t+1)+sqrt(t))#
#=lim_(t->oo) sqrt(t) * 1/(sqrt(1+1/t)+1)#
#=lim_(t->oo) 1/2sqrt(t)#
#=oo#
Explanation:
I'll replace
because
and