#(5a^2-45)/(3a^2-12a) * (4a^2-16a)/(a^3+3a^2)*(21a^3+6a^2)/(4a^2-12a)#
(dividing by a fraction means multiplying by its reciprocal)
#3a^2-12a = 3a(a-4)#
#4a^2-16a = 4a(a-4)#
#(5a^2-45)/(3acancel((a-4))) * (4acancel((a-4)))/(a^3+3a^2)*(21a^3+6a^2)/(4a^2-12a)#
#=(5a^2-45)/(3a) * (4a)/(a^3+3a^2)*(21a^3+6a^2)/(4a^2-12a)#
#=(5a^2-45)/(3) * (4)/(a^3+3a^2)*(21a^3+6a^2)/(4a^2-12a)#
#a^3+3a^2 = a^2(a+3)#
#5a^2-45 = 5(a^2-9) = 5(a+3)(a-3)#
#(5cancel((a+3))(a-3))/(3) * (4)/(a^2cancel((a+3)))*(21a^3+6a^2)/(4a^2-12a)#
#=(5(a-3))/(3) * (4)/(a^2)*(21a^3+6a^2)/(4a^2-12a)#
#4a^2-12a = 4a(a-3)#
#(5cancel((a-3)))/(3) * (4)/(a^2)*(21a^3+6a^2)/(4acancel((a-3))#
#=(5)/(3) * (4)/(a^2)*(21a^3+6a^2)/(4a)#
#21a^3+6a^2 = 3a^2(7a+2)#
#(5)/(cancel3) * (4)/(cancel(a^2))*(cancel3cancel(a^2)(7a+2))/(4a)#
#=5/1 * 4/1 * (7a+2)/(4a)#
#5/1 * cancel4/1 * (7a+2)/(cancel4a) = (5*(7a+2))/a#
#=(5(7a+2))/a#