How do you integrate #int_1^3sqrt(1+(2x-1/(8x))^2)dx# ?

1 Answer
Jan 15, 2018

Given #int_1^3sqrt(1+(2x-1/(8x))^2)dx#
Simplifying the expression under the parentheses

#int_1^3sqrt(1+(4x^2+1/(64x^2)-1/2))dx#
#=>int_1^3sqrt((64x^2+256x^4+1-32x^2)/(64x^2))dx#
#=>int_1^3sqrt((256x^4+32x^2+1)/(64x^2))dx#
#=>1/8int_1^3sqrt((16x^2+1)^2/(x^2))dx#

Considering positive root

#1/8int_1^3(16x^2+1)/(x)dx#
#=>1/8int_1^3(16x+1/x)dx#

Using standard integrals
#=>1/8|(16x^2/2+ln|x|)|_1^3#
#=>|x^2+1/8(ln|x|)|_1^3#
#=>3^2+1/8ln3-(1^2+1/8ln1)#
#=>8+1/8ln3#