Question #4242c

1 Answer
Jan 15, 2018

Substitute #cos(2x) = 2cos^2(x)-1#
Use the quadratic formula on the resulting equation.
Use the inverse cosine function on the two cases.
Add the periodic nature of the function.

Explanation:

Given: #cos(2x)+sqrt(2)cos(x)=1#

Substitute #cos(2x) = 2cos^2(x)-1#

#2cos^2(x)-1 + sqrt2cos(x)-1 =0#

#cos^2(x) + sqrt2/2cos(x)-1 =0#

Use the quadratic formula:

#cos(x)= (-sqrt2/2+-sqrt((sqrt2/2)^2-4(1)(-1)))/(2(1))#

#cos(x)= -sqrt2/4+-3sqrt2/4#

#cos(x)= -sqrt2# and #cos(x)= sqrt2/2#

We must discard the first root, because it is outside of the range of the cosine function #-1<=cos(x)<=1#

Use the inverse cosine on the second root:

#x= cos^-1(sqrt2/2)#

We know that there are two values within the range #0<=x<2pi#

#x = pi/4# and #x = (7pi)/4#

Add the fact that these roots will repeat at integer multiples of #2pi#:

#x = pi/4+2npi# and #x = (7pi)/4+ 2npi# #n in ZZ#

These roots can be observed on the graph of the original function:

graph{cos(2x)+sqrt(2)cos(x)-1 [-10, 10, -5, 5]}