Let #x(t)=e^t/t+e^t# and #y(t)=e^t-tcost# Therefore, #f(t)=(x(t),y(t))#, so #f'(t)=(x'(t),y'(t))#.
#x'(t)=d/dt[e^t/t+e^t]#
#x'(t)=d/dt[e^t/t]+d/dt[e^t]#
#x'(t)=(td/dt[e^t]-e^td/dt[t])/t^2+e^t#
#x'(t)=(te^t-e^t)/t^2+e^t#
#x'(t)=e^t((t-1)/t^2+1)#
#y'(t)=d/dt[e^t-tcost]#
#y'(t)=d/dt[e^t]-d/dt[tcost]#
#y'(t)=e^t-(td/dt[cost]+costd/dt[t])#
#y'(t)=e^t-(-tsint+cost)#
#y'(t)=e^t+tsint-cost#
#f'(t)=(e^t((t-1)/t^2+1),e^t+tsint-cost)#