How do you calculate #root(3)(65)# to #4# decimal places ?
1 Answer
Explanation:
Note that:
#65 = 4^3+1#
Method 1 - Newton Raphson
Let:
#f(x) = x^3-65#
Then:
#f'(x) = 3x^2#
So given an approximation
#a_(i+1) = a_i - (f(a_i))/(f'(a_i)) = a_i - (a_i^3-65)/(3a_i^2) = (2a_i^3+65)/(3a_i^2)#
Let
Then:
#a_1 = (2a_0^3+65)/(3a_0^2) = (2(color(blue)(4))^3+65)/(3(color(blue)(4))^2) = 193/48 = 4.0208bar(3)#
This is almost correct to
#a_2 = (2a_1^3+65)/(3a_1^2) = (2(color(blue)(193/48))^3+65)/(3(color(blue)(193/48))^2) = (2(193)^3+65(48)^3)/(3(193)^2(48)) = 10783297/2681928 ~~ 4.02072576#
So to
Method 2 - Binomial expansion
#root(3)(65) = 4 (1+1/64)^(1/3)#
#color(white)(root(3)(65)) = 4(1+1/3(1/64)-1/9(1/64)^2+5/81(1/64)^3-...)#
#color(white)(root(3)(65)) ~~ 4(1+1/192-1/36864)#
#color(white)(root(3)(65)) = 37055/9216#
#color(white)(root(3)(65)) ~~ 4.020725#
#color(white)(root(3)(65)) ~~ 4.0207" "# to#4# decimal places