How to divide the first expression by the second? : 1) 2x^3-7x^2+15x-3, x-3
1 Answer
Jan 18, 2018
Explanation:
"one way is to use the divisor as a factor in the numerator"
"consider the numerator"
color(red)(2x^2)(x-3)color(magenta)(+6x^2)-7x^2+15x-3
=color(red)(2x^2)(x-3)color(red)(-x)(x-3)color(magenta)(-3x)+15x-3
=color(red)(2x^2)(x-3)color(red)(-x)(x-3)color(red)(+12)(x-3)color(magenta)(+36)-3
color(red)(2x^2)(x-3)color(red)(-x)(x-3)color(red)(+12)(x-3)+33
"quotient "=color(red)(2x^2-x+12)," remainder "=33
rArr(2x^3-7x^2+15x-3)/(x-3)
=2x^2-x+12+33/(x-3)