Question #786af

1 Answer
Jan 21, 2018

#1/4(4a^3 + 6a^3 +4a^2 +a +1)#

Explanation:

I'm interpreting the question as:
#lim_(h to 0)(h*((a+0h)^3+(a+1h)^3+cdots+(a+(n-1)h)^3))#

#lim_(h to 0)sum_(k=0)^(n-1)(h*f(a+k*h))# where #f(x)=x^3#.

This is a left Riemann sum for the function #f(x)=x^3# on the interval from #a# to #a+1#. In this case #h=(a+1-a)/n = 1/n#.

We can evaluate the limit by evaluating the equivalent definite integral:

#int_a^(a+1)x^3dx = [1/4x^4]_a^(a+1) = 1/4((a+1)^4-a^4)#

#=1/4(a^4 + 4a^3 + 6a^3 +4a^2 +a +1-a^4)#

#=1/4(4a^3 + 6a^3 +4a^2 +a +1)#