How do you solve #\frac { 1} { x - 7} + \frac { x + 2} { x - 3} = \frac { 3} { x ^ { 2} - 10x + 21}#?

3 Answers
Jan 22, 2018

#x=-2.90 or 6.90#

Explanation:

First, solve the quadratic on the bottom of the fraction (denominator) on the left side:

#3/(x^2-10x+21)#

#3/((x-3)(x-7))#

Now we move to the right side and add the two fractions together by multiplying the two denominators together.

#(x-3+(x+2)(x-7))/((x-3)(x-7))#

Now we get this:

#(x-3+(x+2)(x-7))/((x-3)(x-7))=3/((x-3)(x-7))#

You can see that the two denominators are the same so we can eliminate them to make our lives easier:

#x-3+(x+2)(x-7)=3#

Expand the brackets and simplify by bringing everything over to one side:

#x^2-4x-20=0#

Plot this on a graph (using a graphing calculator) and you will see that the graph crosses the #x#-axis at #-2.9# and #6.9#.

There we go, those are the two answers. I also checked the equation and everything seems in order.

Hope this helps,

SRNAG (some random nerd across the globe)

Jan 22, 2018

#x=2+-2sqrt6#

Explanation:

First, we can factor the denominator on the right by grouping:
#1/(x-7)+(x+2)/(x-3)=3/(x^2-10x+21)#

#1/(x-7)+(x+2)/(x-3)=3/(x^2-7x-3x+21)#

#1/(x-7)+(x+2)/(x-3)=3/(x(x-7)-3(x-7))#

#1/(x-7)+(x+2)/(x-3)=3/((x-7)(x-3))#

Next, we multiply through by #(x-7)(x-3)#:
#(x-7)(x-3)(1/(x-7)+(x+2)/(x-3))=3/cancel((x-7)(x-3))*cancel((x-7)(x-3))#

#x-3+(x+2)(x-7)=3#

#x-3+x^2-7x+2x-14=3#

#x^2-4x-20=0#

Solve with the quadratic formula:
#x=2+-2sqrt6#

Jan 22, 2018

See a solution process below:

Explanation:

First, put both fractions on the left side of the equation over a common denominator by multiplying each by the appropriate form of #1#:

#((x - 3)/(x - 3) xx 1/(x - 7)) + ((x - 7)/(x - 7) xx (x + 2)/(x - 3)) = 3/(x^2 - 10x + 21)#

#((x - 3) xx 1)/((x - 3) xx (x - 7)) + ((x - 7) xx (x + 2))/((x - 7) xx (x - 3)) = 3/(x^2 - 10x + 21)#

#(x - 3)/(x^2 - 3x - 7x + 21) + (x^2 + 2x - 7x - 14)/(x^2 - 7x - 3x + 21) = 3/(x^2 - 10x + 21)#

#(x - 3)/(x^2 - 10x + 21) + (x^2 - 5x - 14)/(x^2 - 10x + 21) = 3/(x^2 - 10x + 21)#

#((x - 3) + (x^2 - 5x - 14))/(x^2 - 10x + 21) = 3/(x^2 - 10x + 21)#

#(x - 3 + x^2 - 5x - 14)/(x^2 - 10x + 21) = 3/(x^2 - 10x + 21)#

#(x^2 - 5x + x - 14 - 3)/(x^2 - 10x + 21) = 3/(x^2 - 10x + 21)#

#(x^2 - 4x - 17)/(x^2 - 10x + 21) = 3/(x^2 - 10x + 21)#

Next, multiply each side of the equation by #color(red)((x^2 - 10x + 21))# to eliminate the fractions while keeping the equation balanced:

#color(red)((x^2 - 10x + 21)) xx (x^2 - 4x - 17)/(x^2 - 10x + 21) = color(red)((x^2 - 10x + 21)) xx 3/(x^2 - 10x + 21)#

#cancel(color(red)((x^2 - 10x + 21))) xx (x^2 - 4x - 17)/color(red)(cancel(color(black)(x^2 - 10x + 21))) = cancel(color(red)((x^2 - 10x + 21))) xx 3/color(red)(cancel(color(black)(x^2 - 10x + 21)))#

#x^2 - 4x - 17 = 3#

Then, subtract #color(red)(3)# from each side of the equation to put the equation in standard form while keeping the equation balanced:

#x^2 - 4x - 17 - color(red)(3) = 3 - color(red)(3)#

#x^2 - 4x - 20 = 0#

Now, we can use the quadratic equation to solve this problem:

The quadratic formula states:

For #color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0#, the values of #x# which are the solutions to the equation are given by:

#x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))#

Substituting:

#color(red)(1)# for #color(red)(a)#

#color(blue)(-4)# for #color(blue)(b)#

#color(green)(-20)# for #color(green)(c)# gives:

#x = (-color(blue)(-4) +- sqrt(color(blue)(-4)^2 - (4 * color(red)(1) * color(green)(-20))))/(2 * color(red)(1))#

#x = (4 +- sqrt(16 - (-80)))/2#

#x = 4/2 +- sqrt(16 + 80)/2#

#x = 2 +- sqrt(96)/2#

#x = 2 +- sqrt(16 * 6)/2#

#x = 2 +- (sqrt(16)sqrt(6))/2#

#x = 2 +- (4sqrt(6))/2#

#x = 2 +- 2sqrt(6)#